Wave Equation#
John S Butler john.s.butler@tudublin.ie Course Notes Github#
Overview#
This notebook will implement the Forward Euler in time and Centered in space method to appoximate the solution of the wave equation.
The Differential Equation#
Condsider the one-dimensional hyperbolic Wave Equation:
where \(a=1\), with the initial conditions
with wrap around boundary conditions.
# LIBRARY
# vector manipulation
import numpy as np
# math functions
import math
# THIS IS FOR PLOTTING
%matplotlib inline
import matplotlib.pyplot as plt # side-stepping mpl backend
import warnings
warnings.filterwarnings("ignore")
Discete Grid#
The region \(\Omega\) is discretised into a uniform mesh \(\Omega_h\). In the space \(x\) direction into \(N\) steps giving a stepsize of
resulting in
and into \(N_t\) steps in the time \(t\) direction giving a stepsize of
resulting in
The Figure below shows the discrete grid points for \(N=10\) and \(Nt=100\), the known boundary conditions (green), initial conditions (blue) and the unknown values (red) of the Heat Equation.
N=20
Nt=100
h=2*np.pi/N
k=1/Nt
time_steps=100
time=np.arange(0,(time_steps+.5)*k,k)
x=np.arange(0,2*np.pi+h/2,h)
X, Y = np.meshgrid(x, time)
fig = plt.figure()
plt.plot(X,Y,'ro');
plt.plot(x,0*x,'bo',label='Initial Condition');
plt.xlim((-h,2*np.pi+h))
plt.ylim((-k,max(time)+k))
plt.xlabel('x')
plt.ylabel('time (ms)')
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.title(r'Discrete Grid $\Omega_h$ ',fontsize=24,y=1.08)
plt.show();
Initial Conditions#
The discrete initial conditions is,
The figure below plots values of \(w[j,0]\) for the inital (blue) conditions for \(t[0]=0.\)
w=np.zeros((time_steps+1,N+1))
b=np.zeros(N-1)
# Initial Condition
for j in range (0,N+1):
w[0,j]=1-np.cos(x[j])
fig = plt.figure(figsize=(12,4))
plt.plot(x,w[0,:],'o:',label='Initial Condition')
plt.xlim([-0.1,max(x)+h])
plt.title('Intitial Condition',fontsize=24)
plt.xlabel('x')
plt.ylabel('w')
plt.legend(loc='best')
plt.show()
Boundary Conditions#
To account for the wrap-around boundary conditions
and
xpos = np.zeros(N+1)
xneg = np.zeros(N+1)
for j in range(0,N+1):
xpos[j] = j+1
xneg[j] = j-1
xpos[N] = 0
xneg[0] = N
The Explicit Forward Time Centered Space Difference Equation#
The explicit Forward Time Centered Space difference equation of the Wave Equation is,
Rearranging the equation we get,
for \(j=0,...10\) where \(\lambda=\frac{\Delta_t}{\Delta_x}\).
This gives the formula for the unknown term \(w^{n+1}_{j}\) at the \((j,n+1)\) mesh points in terms of \(x[j]\) along the nth time row.
lamba=k/h
for n in range(0,time_steps):
for j in range (0,N+1):
w[n+1,j]=w[n,j]-lamba/2*(w[n,int(xpos[j])]-w[n,int(xneg[j])])
Results#
fig = plt.figure(figsize=(12,6))
plt.subplot(121)
for n in range (1,time_steps+1):
plt.plot(x,w[n,:],'o:')
plt.xlabel('x[j]')
plt.ylabel('w[j,n]')
plt.subplot(122)
X, T = np.meshgrid(x, time)
z_min, z_max = np.abs(w).min(), np.abs(w).max()
plt.pcolormesh( X,T, w, vmin=z_min, vmax=z_max)
#plt.xticks(np.arange(len(x[0:N:2])), x[0:N:2])
#plt.yticks(np.arange(len(time)), time)
plt.xlabel('x[j]')
plt.ylabel('time, t[n]')
clb=plt.colorbar()
clb.set_label('Temperature (w)')
#plt.colorbar()
plt.suptitle('Numerical Solution of the Wave Equation',fontsize=24,y=1.08)
fig.tight_layout()
plt.show()