Problem Sheet 3 - Runge-Kutta#
Question 1#
a. Apply the Midpoint Method to approximate the solution of the given initial value problems using the indicated number of time steps. Compare the approximate solution with the given exact solution:
(170)#\[\begin{equation} y'=t-y, \ \ (0\leq t \leq 4),\end{equation}\]with the initial condition \(y(0)=1,\) Let \(N=4\), with the exact solution
(171)#\[\begin{equation}y(t)=2e^{-t}+t-1.\end{equation}\]b. Apply the Midpoint Method to approximate the solution of the given initial value problems using the indicated number of time steps. Compare the approximate solution with the given exact solution:
(172)#\[\begin{equation}y'=y-t, \ \ (0\leq t \leq 2),\end{equation}\]with the initial condition \(y(0)=2,\) Let \(N=4\), with the exact solution
(173)#\[\begin{equation}y(t)=e^{t}+t+1.\end{equation}\]
Question 2#
a. Apply the 4th Order Runge-Kutta Method to approximate the solution of the given initial value problems using the indicated number of time steps. Compare the approximate solution with the given exact solution
(174)#\[\begin{equation}y'=t-y, \ \ (0\leq t \leq 4),\end{equation}\]with the initial condition \(y(0)=1,\) Let \(N=4\), with the exact solution
(175)#\[\begin{equation}y(t)=2e^{-t}+t-1.\end{equation}\]b. Apply the 4th Order Runge-Kutta Method to approximate the solution of the given initial value problems using the indicated number of time steps. Compare the approximate solution with the given exact solution
(176)#\[\begin{equation}y'=y-t, \ \ (0\leq t \leq 2)\end{equation}\]with the initial condition \(y(0)=2,\) \(N=4\), with the exact solution
(177)#\[\begin{equation}y(t)=e^{t}+t+1.\end{equation}\]
Question 3#
Derive the difference equation for the Midpoint Runge-Kutta method
(178)#\[\begin{equation} w_{n+1}=w_n+k_2,\end{equation}\](179)#\[\begin{equation}k_1=hf(t_n,w_n),\end{equation}\](180)#\[\begin{equation}k_2=hf(t_n+\frac{1}{2}h,w_n+\frac{1}{2}k_1),\end{equation}\]for solving the ordinary differential equation
(181)#\[\begin{equation} \frac{dy}{dt}=f(t,y), \end{equation}\]with the initial condition
(182)#\[\begin{equation}y(t_0)=y_0, \end{equation}\]by using a formula of the form
(183)#\[\begin{equation} w_{n+1}=w_n+ak_1+bk_2, \end{equation}\]where \(k_1\) is defined as above,
(184)#\[\begin{equation}k_2=hf(t_n+\alpha h,w_n+\beta k_1),\end{equation}\]and \(a\), \(b\), \(\alpha\) and \(\beta\) are constants are determined. Prove that \(a+b=1\) and \(b\alpha=b\beta=\frac{1}{2}\) and choose appropriate values to give the Midpoint Runge-Kutta method.
Question 4#
For the Runge-Kutta methods describe in your own words the concepts:
a. Consistency;
b. Convergence.
Question 5#
Describe in your own words the theorem below and its proof: Assume that the Runge-Kutta method satisfies the Lipschitz Condition. Then for the initial value problems
(185)#\[\begin{equation} y^{'}=f(x,y),\end{equation}\](186)#\[\begin{equation} y(x_0)=y_0. \end{equation}\]The numerical solution \(\{ w_n\}\) satisfies
(187)#\[\begin{equation} \max_{a\leq x\leq b}|y(x_n)-w_n| \leq e^{(b-a)L}|y_0-w_0|+\left[\frac{e^{(b-a)L}-1}{L} \right]\tau(h)\end{equation}\]where
(188)#\[\begin{equation}\tau(h) = \max_{a\leq x\leq b}|\tau_n(h)|,\end{equation}\]If the consistency condition
(189)#\[\begin{equation} \delta(h) \rightarrow 0 \mbox{ as } h\rightarrow 0, \end{equation}\]where
(190)#\[\begin{equation}\delta(h) = \max_{a \leq x \leq b}|f(x,y)-F(x,y;h;f)|. \end{equation}\]
Question 6#
Adapt the Python code for the Heun’s second order Runge-Kutta method provided to approximate solution of the integrate and fire differential equation:
(191)#\[\begin{equation} \tau_m\frac{dV}{dt} = -(V-E_L) + R_mI(t), \ \ -50\leq t \leq 400, \end{equation}\]where \(E_L = -75\), \(\tau_m = 10\), \(R_m = 10\) and \(I(t)=0.01t\) and the initial condition \(V(-50) = -75\) using a stepsize of \(h=0.5\).